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Abstract 

The quality of software relies on testing in accordance with user specifications and requirements. Designing, prioritizing, and 
optimizing test cases to ensure quality presents significant challenges. Various testing tools are available for software testing, 
applicable in both manual and automated contexts. Recent studies have demonstrated that automated software testing outperforms 
manual testing when employing heuristic search methods. This paper presents a survey on the genetic algorithm approach for the 
random generation of test cases in functional software testing. 
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Introduction 

Software testing is a process that evaluates the runtime 
quality and performance of software to ensure it meets the 
highest standards of quality. The software industry 
experiences a significant loss of $500 billion attributed to a 
decline in software quality. Enhancing software quality can 
be achieved through the implementation of automated 
testing, ensuring that the final product aligns with user 
specifications and requirements. Testing techniques can be 
categorized into two main types: functional testing and 
structural testing. Functional requirements play a crucial role 
in functional testing, commonly referred to as black box 
testing, while structural testing, also known as white box 
testing, focuses on the internal coding aspects. Gray box 
testing refers to the integration of both black box and white 
box testing methodologies [2]. Software testing involves the 
systematic verification and validation processes to ensure 

that the software meets all specified business and technical 
requirements. Approximately 50% of the resources allocated 
for software development are utilized during the software 
testing phase. Automated testing can significantly reduce 
software development costs. A test case includes a unique 
identifier, references to requirements from a software 
specification, a sequence of steps, events, preconditions, 
input, output, expected results, and actual results, serving as 
input for software testing [10, 11]. Throughout the years, 
various software techniques have been effectively utilized in 
the domain of software testing, including genetic algorithms, 
neural networks, and fuzzy logic. The process of generating 
test cases can be framed as an optimization problem utilizing 
a meta-heuristic search technique known as the Genetic 
Algorithm [12, 13, 14]. Genetic Algorithms have been utilized in 
various applications Optimization challenges in software 
testing can be addressed through the automatic generation of 
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test plans for functionality testing, as parallelism and search 
space operations are critical characteristics. This paper 
provides an overview of the efficient application of genetic 
algorithms in the generation of test cases for software testing. 
The paper is divided into four sections. Section 1 includes 
the Introduction, section 2 provides a brief overview of a 
Genetic Algorithm, section 3 discusses the related work in 
the area of test case generation utilizing Genetic Algorithms 
for functional testing, and section 4 presents the conclusion 
and outlines future work. 
 
An Introduction to Genetic Algorithm 

A genetic algorithm is an evolutionary algorithm developed 
by John Holland in 1970. This tool is capable of addressing 
numerous complex real-life challenges by automatically 
generating high-quality test data [17, 18, 19]. This approach has 
developed into a practical and robust optimization technique 
and search method, drawing inspiration from the natural 
process of evolution through the selection of the fittest 
individuals. This approach effectively addresses a series of 
challenges with minimal information [11, 20]. A specific 
problem can be addressed through a population of 
chromosomes, which consist of strings of binary digits, with 
each digit referred to as a gene. This population can be 
generated randomly. There are three distinct types of 
operators utilized in the process of genetic algorithms: 
selection, crossover, and mutation [11, 18]. 
Selection: The selection operator is utilized to identify the 
most suitable parents for executing subsequent genetic 
algorithm operations. The selection process is typically 
conducted based on the fitness value of the individuals, 
derived from the fitness function. A fitness function is 
defined as a specific function that, based on certain criteria, 
returns a numerical value indicating the acceptability of the 
program. This function is utilized in the selection process to 
identify the optimal point, allowing the variants to progress 
to the subsequent iteration [21, 22]. The likelihood, proximity 
to boundary value, and branch coverage are critical 
components of an effective fitness function. There are six 
distinct types of selection methods: roulette wheel, stochastic 
universal sampling, linear rank, exponential rank, binary 
tournament, and truncation. 
The crossover operation, also known as recombination, is 
implemented following the selection process. This operation 
involves the exchange of genes or sequences of bits between 
two selected individuals. Various types of crossover 
operators are employed for binary encoding, including one-
point, two-point, uniform, and arithmetic methods. The 
crossover process is conducted multiple times using various 
parent individuals. Mutation is executed following crossover 
when the mutation probability is applicable for the specified 
iteration.  
Mutation serves to preserve genetic diversity within a 
population by modifying chromosomes to incorporate 
beneficial traits. There are six primary types of mutation 
operators utilized in genetic algorithms: Bit string, flip bit, 
boundary, uniform, non-uniform, and Gaussian. 
 

Related Work 

This section offers a concise overview of the various 
hybridized genetic algorithm techniques utilized in software 
testing. Mark Last and colleagues [14] proposed a hybrid 
fuzzy-based genetic algorithm to generate test cases for 
mutation testing. This study identified a limited set of test 
cases. The deficiencies in test cases are revealed through the 
application of altered versions of the original method. The 

proposed approach employs a Fuzzy Logic Controller (FLC) 
to determine the probability of crossover, which varies based 
on the age intervals assigned throughout the lifespan. The 
age and lifespan of chromosomes (parents) are determined 
by the FLC state variables. An effective set of test cases is 
generated for a Boolean expression comprising 100 Boolean 
attributes through the application of three logical operators: 
AND, OR, and NOT. An external application generates the 
correct expression randomly, and a straightforward function 
is evaluated for each test case to produce an erroneous 
expression. Francisca Eanuelle et al. [20] have demonstrated 
the improvement of test plans through the application of the 
GA method for functionality testing. The method is 
implemented impartially to prevent any influence from the 
expert. The fitness function utilized by them is presented in 
equation (1). 
 

 
 

Where p = l1, l2,…,lk is a test plan or sequence of operations 
and t is a transition function for converting one operation li 
to the next operation li+1 in a sequence. The sequence is 
considered as better if the value of fitness function is high. 
Ruilian Zhao et al. [24], used the GA and neural network for 
the functional testing of the software under test, and they 
applied the improved Genetic algorithm to the function 
model, created using neural network. The following fitness 
function, shown in equation (2) is used. 
 

 
 

In this context, c denotes the actual output, while g signifies 
the goal output of the software being evaluated. When the 
fitness value of the proposed algorithm meets or exceeds the 
maximum potential outcome, the algorithm concludes its 
execution, and the current individual is designated as the 
optimal test inputs for the respective outputs. The authors 
determined that the proposed GA is capable of generating 
superior test cases with enhanced efficiency.  
Li, Zhang, and Kou [25] utilized the GA to obtain the local 
optimal solution for a specific problem, resulting in enhanced 
performance. A new algorithm known as the Genetic-Particle 
Swarm Mixed Algorithm (GPSMA) was applied to 
automatically generate software test data. The proposed 
technique employs the update mode for each individual to 
substitute the mutation process within the algorithm that 
relies on population division. The proposed algorithm is 
capable of generating and searching for specific test data 
within a domain to meet the test condition requirements. 
Xuan Peng et al. [15] proposed an approach known as US-
RDG for web applications, focusing on gray box testing. 
This method integrates User Session data with the Request 
Dependence Graph (RDG) to facilitate the automatic 
generation of test cases. Their simulated results indicate that 
US-RDG effects outperform traditional user session-based 
testing by achieving higher path coverage and fault detection 
rates with a smaller test suite. The concept was utilized as a 
transition relation represented by the sequence "page → 
request → page". Transition relations indicate the 
relationship between pages and requests. From structural 
analysis using RDG, specific transition relations in the 
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application can be extracted. Ultimately, a GA heuristic was 
proposed to generate test cases that cover the maximum 
number of transition relations by integrating various user 
sessions. The performance of US-RDG in test case 
generation for web applications has been found to be highly 
effective. The fitness function of a chromosome was utilized 
as demonstrated in equation (3). 
 

Fitness = (α *| CDTR | + | CLTR |) / (α *| DTR | + | LTR| ) (3) 

 

Where |CDTR| and |CLTR| denotes the number of data and 
link dependence transition relations covered in the 
chromosome. The fitness value achieves 1 when a 
chromosome covers all the data and link dependence in 
transition relations present in the specific application. The 
authors introduced a parameter α, indicating the coefficient 
of the data dependence transition relation. They have taken α 
as much as greater than 1 to increase the proportion of the 
data dependence transition relation and assigned 1 to the 
coefficient of the link dependence in transition relation. The 
chromosomes have a bigger fitness which covers more data 
dependence transition relations. 
Ali Shahbazi et al. [5], used a multi objective optimization in 
black box string test case generation for random testing and 
adaptive random testing. The authors examined many string 
distance functions and hence they introduce two objectives 
for effective string test cases such as the length distribution 
of the string test cases and the diversity control of the test 
cases within a test set. They used one diversity- based fitness 
function to generate optimized test sets to reveal faults more 
effectively and it is shown in equation (4). 
 

 
 
In the above function ti denotes the ith test case and β is its 
nearest test case in the test set and the summation is 
performed between the two distances test cases. They found 
the higher value of the fitness function results, the more 
diverse distribution of test cases. After an extensive study of 
different testing techniques, we came to learn GA parameter 
is efficiently used for generating test cases in functional 
software testing. 
 
Conclusion and Future Work 

This paper examines the role of various hybridized Genetic 
Algorithms in enhancing the efficiency of software testing 
through the generation of an increasing number of test cases. 
An automatic test case generator is provided. The genetic 
algorithm can be utilized alongside neural networks and 
fuzzy systems to conduct various testing methods aimed at 
enhancing performance. 
In the future, a new hybridized algorithm can be developed 
by utilizing an improved fitness function, which will assist in 
evaluating the efficiency of test cases. This approach will 
further enhance the effectiveness of test results by adjusting 
input parameters, increasing the number of generations, and 
obtaining values for varying population sizes. There are 
plans to implement a hybridized genetic algorithm in 
conjunction with other soft computing techniques, such as 
neural networks, to optimize test case generation for web-
based application software. 
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