Online ISSN: 3107 - 7676
LJMR 2025; 1(6): 14-17

2025 November - December
www.allmultiresearchjournal.com

Received: 20-09-2025

Accepted: 22-10-2025
Published: 08-11-2025
DOI: https://doi.org/10.54660/LJMR.2025.1.6.14-17

A Review of a Randomized Approach to Test Case Generation Using

Genetic Algorithms

Sumit Saxena **, Dr. Qaim Mehdi Rizbi ?

1-2 Department of Computer Science, Shri Krishna University Chhatarpur, Madhy Pradaesh, India

Corresponding Author; Sumit Saxena

Abstract

The quality of software relies on testing in accordance with user specifications and requirements. Designing, prioritizing, and
optimizing test cases to ensure quality presents significant challenges. Various testing tools are available for software testing,
applicable in both manual and automated contexts. Recent studies have demonstrated that automated software testing outperforms
manual testing when employing heuristic search methods. This paper presents a survey on the genetic algorithm approach for the

random generation of test cases in functional software testing.

Keyword: Designing, Prioritizing, and Optimizing Test

Introduction

Software testing is a process that evaluates the runtime
quality and performance of software to ensure it meets the
highest standards of quality. The software industry
experiences a significant loss of $500 billion attributed to a
decline in software quality. Enhancing software quality can
be achieved through the implementation of automated
testing, ensuring that the final product aligns with user
specifications and requirements. Testing techniques can be
categorized into two main types: functional testing and
structural testing. Functional requirements play a crucial role
in functional testing, commonly referred to as black box
testing, while structural testing, also known as white box
testing, focuses on the internal coding aspects. Gray box
testing refers to the integration of both black box and white
box testing methodologies 2. Software testing involves the
systematic verification and validation processes to ensure

~ 14~

that the software meets all specified business and technical
requirements. Approximately 50% of the resources allocated
for software development are utilized during the software
testing phase. Automated testing can significantly reduce
software development costs. A test case includes a unique
identifier, references to requirements from a software
specification, a sequence of steps, events, preconditions,
input, output, expected results, and actual results, serving as
input for software testing 1% . Throughout the years,
various software techniques have been effectively utilized in
the domain of software testing, including genetic algorithms,
neural networks, and fuzzy logic. The process of generating
test cases can be framed as an optimization problem utilizing
a meta-heuristic search technique known as the Genetic
Algorithm 12 13.14_ Genetic Algorithms have been utilized in
various applications Optimization challenges in software
testing can be addressed through the automatic generation of

https://www.allmultiresearchjournal.com/
https://doi.org/10.54660/IJMR.2025.1.6.14-17

International Journal of Multi Research

test plans for functionality testing, as parallelism and search
space operations are critical characteristics. This paper
provides an overview of the efficient application of genetic
algorithms in the generation of test cases for software testing.
The paper is divided into four sections. Section 1 includes
the Introduction, section 2 provides a brief overview of a
Genetic Algorithm, section 3 discusses the related work in
the area of test case generation utilizing Genetic Algorithms
for functional testing, and section 4 presents the conclusion
and outlines future work.

An Introduction to Genetic Algorithm

A genetic algorithm is an evolutionary algorithm developed
by John Holland in 1970. This tool is capable of addressing
numerous complex real-life challenges by automatically
generating high-quality test data ['7-18 191, This approach has
developed into a practical and robust optimization technique
and search method, drawing inspiration from the natural
process of evolution through the selection of the fittest
individuals. This approach effectively addresses a series of
challenges with minimal information It 20 A specific
problem can be addressed through a population of
chromosomes, which consist of strings of binary digits, with
each digit referred to as a gene. This population can be
generated randomly. There are three distinct types of
operators utilized in the process of genetic algorithms:
selection, crossover, and mutation [281,

Selection: The selection operator is utilized to identify the
most suitable parents for executing subsequent genetic
algorithm operations. The selection process is typically
conducted based on the fitness value of the individuals,
derived from the fitness function. A fitness function is
defined as a specific function that, based on certain criteria,
returns a numerical value indicating the acceptability of the
program. This function is utilized in the selection process to
identify the optimal point, allowing the variants to progress
to the subsequent iteration 1222, The likelihood, proximity
to boundary value, and branch coverage are critical
components of an effective fitness function. There are six
distinct types of selection methods: roulette wheel, stochastic
universal sampling, linear rank, exponential rank, binary
tournament, and truncation.

The crossover operation, also known as recombination, is
implemented following the selection process. This operation
involves the exchange of genes or sequences of bits between
two selected individuals. Various types of crossover
operators are employed for binary encoding, including one-
point, two-point, uniform, and arithmetic methods. The
crossover process is conducted multiple times using various
parent individuals. Mutation is executed following crossover
when the mutation probability is applicable for the specified
iteration.

Mutation serves to preserve genetic diversity within a
population by modifying chromosomes to incorporate
beneficial traits. There are six primary types of mutation
operators utilized in genetic algorithms: Bit string, flip bit,
boundary, uniform, non-uniform, and Gaussian.

Related Work

This section offers a concise overview of the various
hybridized genetic algorithm techniques utilized in software
testing. Mark Last and colleagues ™ proposed a hybrid
fuzzy-based genetic algorithm to generate test cases for
mutation testing. This study identified a limited set of test
cases. The deficiencies in test cases are revealed through the
application of altered versions of the original method. The

~ 15~

https://www.allmultiresearchjournal.com

proposed approach employs a Fuzzy Logic Controller (FLC)
to determine the probability of crossover, which varies based
on the age intervals assigned throughout the lifespan. The
age and lifespan of chromosomes (parents) are determined
by the FLC state variables. An effective set of test cases is
generated for a Boolean expression comprising 100 Boolean
attributes through the application of three logical operators:
AND, OR, and NOT. An external application generates the
correct expression randomly, and a straightforward function
is evaluated for each test case to produce an erroneous
expression. Francisca Eanuelle et al. ?@ have demonstrated
the improvement of test plans through the application of the
GA method for functionality testing. The method is
implemented impartially to prevent any influence from the
expert. The fitness function utilized by them is presented in
equation (1).

k1
fr= Zr[’!i —1,;)

Where p =11, 12,... Ik is a test plan or sequence of operations
and t is a transition function for converting one operation li
to the next operation li+1 in a sequence. The sequence is
considered as better if the value of fitness function is high.
Ruilian Zhao et al. 4, used the GA and neural network for
the functional testing of the software under test, and they
applied the improved Genetic algorithm to the function
model, created using neural network. The following fitness
function, shown in equation (2) is used.

—, C#Eg
F=1le—¢gl

Sowr |c—g] =107

In this context, ¢ denotes the actual output, while g signifies
the goal output of the software being evaluated. When the
fitness value of the proposed algorithm meets or exceeds the
maximum potential outcome, the algorithm concludes its
execution, and the current individual is designated as the
optimal test inputs for the respective outputs. The authors
determined that the proposed GA is capable of generating
superior test cases with enhanced efficiency.

Li, Zhang, and Kou I ytilized the GA to obtain the local
optimal solution for a specific problem, resulting in enhanced
performance. A new algorithm known as the Genetic-Particle
Swarm Mixed Algorithm (GPSMA) was applied to
automatically generate software test data. The proposed
technique employs the update mode for each individual to
substitute the mutation process within the algorithm that
relies on population division. The proposed algorithm is
capable of generating and searching for specific test data
within a domain to meet the test condition requirements.
Xuan Peng et al. %1 proposed an approach known as US-
RDG for web applications, focusing on gray box testing.
This method integrates User Session data with the Request
Dependence Graph (RDG) to facilitate the automatic
generation of test cases. Their simulated results indicate that
US-RDG effects outperform traditional user session-based
testing by achieving higher path coverage and fault detection
rates with a smaller test suite. The concept was utilized as a
transition relation represented by the sequence "page —
request — page". Transition relations indicate the
relationship between pages and requests. From structural
analysis using RDG, specific transition relations in the

https://www.allmultiresearchjournal.com/

International Journal of Multi Research

application can be extracted. Ultimately, a GA heuristic was
proposed to generate test cases that cover the maximum
number of transition relations by integrating various user
sessions. The performance of US-RDG in test case
generation for web applications has been found to be highly
effective. The fitness function of a chromosome was utilized
as demonstrated in equation (3).

Fitness = (¢ *| CDTR | +| CLTR |) / (¢ *| DTR | + | LTR|) (3)

Where |CDTR| and |CLTR| denotes the number of data and
link dependence transition relations covered in the
chromosome. The fitness value achieves 1 when a
chromosome covers all the data and link dependence in
transition relations present in the specific application. The
authors introduced a parameter o, indicating the coefficient
of the data dependence transition relation. They have taken o
as much as greater than 1 to increase the proportion of the
data dependence transition relation and assigned 1 to the
coefficient of the link dependence in transition relation. The
chromosomes have a bigger fitness which covers more data
dependence transition relations.
Ali Shahbazi et al. 1, used a multi objective optimization in
black box string test case generation for random testing and
adaptive random testing. The authors examined many string
distance functions and hence they introduce two objectives
for effective string test cases such as the length distribution
of the string test cases and the diversity control of the test
cases within a test set. They used one diversity- based fitness
function to generate optimized test sets to reveal faults more
effectively and it is shown in equation (4).

IEEL L FILS

>, dist (ri,ﬁ (ri_resr set))
il

In the above function ti denotes the ith test case and p is its
nearest test case in the test set and the summation is
performed between the two distances test cases. They found
the higher value of the fitness function results, the more
diverse distribution of test cases. After an extensive study of
different testing techniques, we came to learn GA parameter
is efficiently used for generating test cases in functional
software testing.

Fp

Conclusion and Future Work

This paper examines the role of various hybridized Genetic
Algorithms in enhancing the efficiency of software testing
through the generation of an increasing number of test cases.
An automatic test case generator is provided. The genetic
algorithm can be utilized alongside neural networks and
fuzzy systems to conduct various testing methods aimed at
enhancing performance.

In the future, a new hybridized algorithm can be developed
by utilizing an improved fitness function, which will assist in
evaluating the efficiency of test cases. This approach will
further enhance the effectiveness of test results by adjusting
input parameters, increasing the number of generations, and
obtaining values for varying population sizes. There are
plans to implement a hybridized genetic algorithm in
conjunction with other soft computing techniques, such as
neural networks, to optimize test case generation for web-
based application software.

References
1. Shivani A, Pandya V. Bridge between black box and
white box — gray box testing technique. International

~ 16~

10.

11.

12.

13.

14.

15.

16.

17.

18.

https://www.allmultiresearchjournal.com

Journal of Electronics and Computer Science
Engineering. 2012;2(1):175-85.

Chauhan N. Software testing: principles and practices.
Oxford: Oxford University Press; c2010.

Jorgensen PC. Software testing: a craftsman’s approach.
3rd ed. Boca Raton: CRC Press; c2008.

Shahbazi A, Miller J. Black-box string test case
generation through a multi-objective optimization. IEEE
Transactions on Software Engineering. 2016, 42(4).
Michael CC, McGraw GE, Schatz MA, Walton CC.
Genetic algorithms for dynamic test data generation. In:
Proceedings of the 1997 International Conference on
Automated Software Engineering (ASE’97). IEEE;
c1997.

Doungsaard C, Dahal K, Hossain A, Suwannasart T.
Test data generation from UML state machine diagrams
using GAs. In: International Conference on Software
Engineering Advances (ICSEA 2007). IEEE; c2007.
Srivastava PP, Kim T. Application of genetic algorithm
in software testing. International Journal of Software
Engineering and Its Applications. 2009;3(4):87-96.
Berndt DJ, Watkins A. High volume software testing
using genetic algorithms. In: Proceedings of the 38th
Annual Hawaii International Conference on System
Sciences. Vol. 9. Washington (DC): IEEE Computer
Society; c2005. p. 318-26.

Dixit S, Tomar P. Automated test data generation using
computational intelligence. In: Reliability, Infocom
Technologies and Optimization (ICRITO) (Trends and
Future Directions), 4th International Conference on.
IEEE; c2015.

Sharma A, Patani R, Aggarwal A. Software testing using
genetic algorithms. International Journal of Computer
Science and Engineering Survey. 2016, 7(2).

Moataz AA, Ali F. Multiple-path testing for cross-site
scripting using genetic algorithms. Journal of Systems
Architecture. 2016;64:50-62.

Yang S, Man T, Xu J, Zeng F, Li K. RGA: a lightweight
and effective regeneration genetic algorithm for
coverage-oriented software test data generation.
Information and Software Technology. 2016;76:19-30.
Last M, Eyal S. Effective black-box testing with genetic
algorithms. In: Lecture Notes in Computer Science.
Springer; c2006. p. 134-48.

Peng X, Lu L. A new approach for session-based test
case generation by GA. In: Communication Software
and Networks (ICCSN), 3rd International Conference
on. IEEE; c2011. p. 91-6.

Zhao R, Lv S. Neural network-based test case generation
using genetic algorithm. In: 13th IEEE International
Symposium on Pacific Rim Dependable Computing.
IEEE; ¢2007. p. 97-100.

Srivastava PR, Kim TH. Application of genetic
algorithm in software testing. International Journal of
Software Engineering and Its Applications.
2009;3(4):87-96.

Ribeiro JCB, Zenha-Rela MA, de Vega FF. A strategy
for evaluating feasible and unfeasible test cases for the
evolutionary testing of object-oriented software. In:
AST’08 Proceedings. ACM; c2008.

Goldberg DE. Genetic algorithms in search,
optimization and machine learning. Massachusetts:
Addison-Wesley; c1989.

https://www.allmultiresearchjournal.com/

International Journal of Multi Research

19.

20.

21.

22.

Wappler S, Lammermann F. Using evolutionary
algorithms for unit testing of object-oriented software.
In: GECCO Proceedings. ACM; ¢2005. p. 1925-32.
Vieira FE, Martins F, Silva R, Menezes R, Braga M.
Using genetic algorithms for test plans for functional
testing. In: 44th ACM SE Proceedings; c2006. p. 140-5.
Mathur AP. Foundations of software testing. 1% ed.
Pearson Education; c2008.

Rauf A, Anwar S, Jaffer MA, Shahid AA. Automated
GUI test coverage analysis using GA. In: Information
Technology: New Generations (ITNG), Seventh
International Conference on. IEEE; ¢2010. p. 1057-62.

How to Cite This Article

Saxena S, Rizbi QM. A Review of a Randomized Approach to Test
Case Generation Using Genetic Algorithms. International Journal of
Multi Research. 2025; 1(6): 14-17.

Creative Commons (CC) License

This is an open access journal, and articles are distributed under the
terms of the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0) License, which
allows others to remix, tweak, and build upon the work non-
commercially, as long as appropriate credit is given and the new
creations are licensed under the identical terms.

~ 17~

https://www.allmultiresearchjournal.com

https://www.allmultiresearchjournal.com/

