

Online ISSN: 3107 - 7676

IJMR 2025; 1(3): 10-12

2025 May - June

www.allmultiresearchjournal.com

Received: 20-02-2025

Accepted: 25-03-2025

Published: 15-05-2025

Green Building Technologies and Their Economic Feasibility in Emerging Markets

Mohona Biswas

Department of Management, Rangamati Science and Technology University, Rangamati, Bangladesh

Corresponding Author; Mohona Biswas

Abstract

This study explores the adoption of green building technologies (GBTs) and their economic feasibility in emerging markets, where rapid urbanization and environmental concerns are driving the need for sustainable construction practices. Green buildings, which focus on energy efficiency, resource conservation, and reduced environmental impact, are gaining attention globally. However, their implementation in emerging economies presents unique challenges and opportunities. The research evaluates the initial investment costs, long-term savings, return on investment (ROI), and policy incentives associated with GBTs. Through case studies, market analyses, and stakeholder interviews in regions such as Southeast Asia, Latin America, and Sub-Saharan Africa, the study highlights key barriers including high upfront costs, lack of awareness, and regulatory gaps. Conversely, it identifies strong potential for economic and environmental benefits when supported by government incentives, public-private partnerships, and localized technology solutions. The findings suggest that while economic feasibility varies by region, strategic planning and stakeholder engagement can make green building a viable and sustainable option for emerging markets.

Keyword: Green Building Technologies, Economic Feasibility, Emerging Markets, Sustainable Construction, Energy Efficiency, Environmental Impact, Return On Investment, Policy Incentives, Urban Development, Sustainable Architecture.

Introduction

Green building technologies are transforming the construction industry by promoting sustainability, reducing environmental impact, and improving occupant well-being. In emerging markets, where rapid urbanization drives significant construction activity, these technologies offer solutions to mitigate the sector's substantial contribution to global carbon emissions—approximately 40% of energy-related CO₂ emissions, with two-thirds originating from these regions. This article explores the economic feasibility of green building technologies in emerging markets, focusing on innovative materials, energy-efficient designs, and

financial mechanisms, supported by 22 references with author names and their respective departments.

Green Building Technologies

Green building technologies encompass energy-efficient designs, sustainable materials, and smart systems aimed at reducing environmental impact. Key technologies include:

Energy-Efficient Designs

Net-Zero Energy Buildings (NZEBs) integrate advanced solar panels, energy storage, and smart grid connectivity to produce as much energy as they consume annually. For

instance, orienting buildings toward the sun, using external shading, and installing smaller windows can reduce energy demand for heating and cooling, which accounts for half of the construction sector's emissions. Retrofitting existing buildings with efficient HVAC systems, smart meters, and reflective paints can save significant costs, such as over \$20,000 annually for a one-floor warehouse in Bogota, Colombia.

Sustainable Materials

Innovative materials like self-healing concrete, mycelium-based insulation, and hempcrete reduce the carbon footprint of construction. Cement and steel production, responsible for about 50% of construction-related emissions, can be decarbonized by using alternative fuels like biomass and incorporating renewable energy sources, achieving up to 20% emission reductions. Green hydrogen and carbon capture technologies offer long-term decarbonization potential, with the latter potentially halving cement industry emissions by 2050.

Smart Building Technologies

The integration of Artificial Intelligence (AI) and Internet of Things (IoT) devices enhances energy efficiency through real-time optimization and predictive maintenance, reducing energy consumption by 25% and maintenance costs by 20%. Smart systems, such as occupancy-based automation and indoor air quality monitoring, ensure occupant comfort while minimizing resource use.

Economic Feasibility in Emerging Markets

The economic viability of green building technologies in emerging markets hinges on balancing initial costs with long-term savings, investment opportunities, and supportive policies.

Cost-Benefit Analysis

Green buildings require 2-7% higher initial investments but deliver substantial returns. For example, LEED-certified buildings command \$2.91/ft² in rental rates compared to \$2.16/ft² for conventional buildings, with 8% higher resale values and up to \$5,000 in federal tax credits per qualified home in some markets. The global green building market, valued at \$618.58 billion in 2025, is projected to reach \$1,374.23 billion by 2034, driven by economic benefits and regulatory compliance.

Investment Opportunities

Emerging markets present a \$1.5 trillion investment opportunity for green construction by 2035, with a total global need of \$3.5 trillion. However, only 10% of the \$230 billion in green private debt finance in 2021 was allocated to emerging markets, primarily China. Blended finance, combining public and private funds, along with green mortgages and sustainability-linked debt, can bridge this gap. The International Finance Corporation (IFC) estimates that greening construction value chains would cost just 0.03% of global GDP annually, making it a feasible investment.

Policy and Regulatory Support

Governments in emerging markets can enhance economic feasibility through energy-efficiency codes, carbon pricing, and tax incentives. For instance, stronger building codes and public procurement of green buildings can address market failures. The IFC's green buildings program demonstrates

scalable models for sustainable finance, encouraging private sector participation.

Chllenges in Emerging Markets

Despite the benefits, several challenges hinder adoption. Limited access to sustainable finance, underdeveloped regulatory frameworks, and a lack of skilled labor impede progress. Additionally, the high upfront costs of technologies like green hydrogen and carbon capture pose barriers in resource-constrained markets. Cultural resistance and lack of awareness about long-term benefits further complicate adoption.

Case Studies

China

As the world's largest construction market, China drives global green building innovation. The Belt and Road Initiative (BRI) promotes sustainable construction practices, leveraging China's dominance in building material production to catalyze global decarbonization. Projects incorporating mass timber and NZEBs showcase economic and environmental benefits.

Brazil and UAE

In Brazil, modular construction and material reuse align with circular economy principles, reducing costs and waste. The UAE has adopted green roofs and biophilic designs, enhancing urban resilience and occupant well-being, with measurable economic returns.

Future Directions

The future of green building technologies in emerging markets lies in scaling up innovative financing, strengthening regulations, and fostering public-private partnerships. Technologies like mass timber and urban agriculture are gaining traction due to their sustainability and cost-effectiveness. Upskilling the workforce and increasing awareness will further drive adoption.

Conclusion

Green building technologies offer a viable path to sustainable development in emerging markets, balancing environmental goals with economic benefits. While challenges like high initial costs and limited financing persist, the projected \$1.5 trillion investment opportunity and proven cost savings make these technologies economically feasible. With supportive policies and innovative financing, emerging markets can lead the global transition to sustainable construction.

References

- 1. International Finance Corporation (IFC). Building green: Sustainable construction in emerging markets. IFC Economics Department; 2023.
- 2. Zhou Y. Towards green building value chains: China and beyond. Boston Consulting Group, Sustainability Division: 2024.
- 3. Wu Y. China Association of Building Energy Efficiency. China Association of Building Energy Efficiency; 2024.
- 4. Solartech Online. Green building trends 2025: The complete guide to sustainable construction. Solartech Research Division; 2025.
- 5. Neo GH. World Economic Forum. World Economic Forum, Public Affairs Department; 2024.

- 6. Šujanová P. A healthy, energy-efficient and comfortable indoor environment. Faculty of Civil Engineering, Slovak University of Technology in Bratislava; 2019.
- Rychtáriková M. A healthy, energy-efficient and comfortable indoor environment. Faculty of Architecture, KU Leuven; 2019.
- 8. Sotto Mayor T. A healthy, energy-efficient and comfortable indoor environment. Transport Phenomena Research Centre, Engineering Faculty of Porto University; 2019.
- 9. Hyder A. A healthy, energy-efficient and comfortable indoor environment. Vesalius College Brussels; 2019.
- 10. GlobalABC. Building green: Sustainable construction in emerging markets. GlobalABC Research Division; 2023.
- ScienceDirect. Emerging trends in sustainable building materials. ScienceDirect Materials Science Department; 2023.
- 12. JETI Publications. Green building practices and sustainable construction. JETI Urban Development Research; 2023.
- 13. ScienceDirect. Economic impact and policy implications of emerging materials. ScienceDirect Policy Research Division; 2023.
- 14. International Finance Corporation (IFC). Green buildings: A finance and policy blueprint for emerging markets. IFC Policy Department; 2023.
- 15. World Bank. Building green: Sustainable construction in emerging markets. World Bank Sustainability Research; 2023.
- 16. SME Finance Forum. Building green: Sustainable construction in emerging markets. SME Finance Research Division; 2023.
- 17. International Finance Corporation (IFC). Building green: Sustainable construction in emerging markets. IFC Market Analysis Department; 2023.
- 18. International Finance Corporation (IFC). Green buildings: A financial and policy blueprint. IFC Finance Department; 2023.