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Abstract

The purpose of this work is to introduce a collection of techniques that utilize a genetic algorithm in order to generate test data
automatically for software testing. Researchers have been proposing a number of various strategies for generating test data for a
number of years now. Each of these methods has its own set of disadvantages. The purpose of this work is to introduce a number
of test techniques that are based on Genetic Algorithms (GAs) and that will have different parameters that can be used to automate
the generation of test data that is based on the internal structure of the program. In order to determine the most appropriate
approach for testing, the factors that have been identified are utilized in the process of evaluating the fitness function of the
genetic algorithm. The test populations are taken as input by these algorithms, which then proceed to evaluate the test cases for
that particular program. The total effectiveness of the genetic algorithm in the realms of search space exploration and exploitation

will be improved as a result of this integration, which will also bring about a higher convergence rate.
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Introduction

The process of software testing involves testing the amount
and quality of software during runtime to the greatest extent
possible. The most fundamental examination of software is
conducted within the environment for which it was originally
built. The process of checking whether or not it runs is
carried out in order to ensure that it produces outputs that are
both proper and efficient. In addition, software testing is
carried out in foreign contexts in order to investigate the
potential for scalability [ 121,

Every single piece of software is put through its paces in a
number of different environments that have been carefully
planned out. The assumptions of some functions have been
made, and the testing that has been carried out is expected to
yield the appropriate results under these assumptions.
However, it is not possible to identify every single problem

at any given moment. Rather, it provides a comparison that
examines the state and behavior of the product, which are the
principles or methods by which users may be able to identify
the issue. In general, a test case is made up of the data that
serves as the input for the software testing process. The
components that make up this system include a unique
identification, references to requirements from a software
specification, a sequence of steps that must be carried out,
events, preconditions, input, output, the expected outcome,
and the actual outcome. The number seventeen is written in
brackets. It is often referred to as an anticipated outcome that
will occur in the setting that is being evaluated. This can be
as basic as stating, "for condition your derived result is b,"
but other test cases provided a full examination of the input
circumstance and displayed findings that were in line with
expectations [2 9 6],
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The Genetic Algorithm (GA), which is a type of meta-
heuristic search tool, is used by Evolutionary Testing in
order to transform the process of generating test cases into an
optimal problem [ 13271 The purpose of evolutionary testing
is to identify the best combinations of test parameters that
fulfill a predetermined test criterion. A "cost function” that is
used to represent this test criterion quantifies the degree to
which each of the optimization parameters that were
generated automatically fulfills the test requirement that was
specified [ 22,

A study of several forms of genetic algorithms is conducted
as part of our research, which is presented in our paper.
Different algorithms have been tested on a variety of
different tools, and their performance has been analyzed. All
of these algorithms adhere to the same foundation of
evolutionary testing, but they possess distinct cost functions.
The observations that are made regarding the manner in
which these functions respond are the result of running these
cost functions on various tools *3 5 111,

Introduction to Genetic Algorithm

In situations where there is a limited amount of information
available, one of the most effective methods for resolving a
group of problems is to utilize a genetic algorithm. Due to
the fact that genetic algorithms are a very broad type of
algorithm, they will perform effectively in any search space
(1. 25,30, 331 All you have to know is what you want the
solution to be able to accomplish in order to perform well,
and a genetic algorithm will be able to develop a high-quality
solution for you. In order to provide solutions for a variety of
complicated issues, genetic algorithms utilize the concepts of
selection and evolution.

There is a tendency for genetic algorithms to do well in
environments that have a very big collection of candidate
solutions and a search space that is not favorable and has
numerous hills and valleys [2 15 81 |t is true that genetic
algorithms are able to perform effectively in any context;
nevertheless, it is possible that they could be surpassed by
algorithms that are more situationally specific when it comes
to search spaces that are less complicated. As a result, it is
important to remember that when dealing with random
events, genetic algorithms are not always the most
appropriate option. They may occasionally need a significant
amount of time to execute, which makes them unsuitable for
usage in real-time situations. On the other hand, they are
among the most effective techniques that may be used to
develop solutions of a high standard rapidly in order to
address a problem [* 8 21 When it comes to constructing a
genetic algorithm, there are a small number of fundamental
methodologies and terminology that will be utilized, such as:
Individual — Possible solutions

Population - Set of all individuals

Search Space - All possible solutions to the specified
problem

Chromosome — Blueprint for an individual

Trait - Possible aspect of an individual entity.

Allele - Possible settings for a trait

Locus - The position of a gene on the chromosome

Genome - Collection of all chromosomes for an individual
entity.

Background
Genetic algorithms employ three fundamental operations on
their population.

~g~
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Selection: A systematic approach is employed to identify the
criteria by which individuals are selected for reproduction
from a population, grounded in their fitness levels. Fitness is
characterized as an individual's ability and capacity to
survive and reproduce within a given environment. The
process of selection creates a new population derived from
the previous one, thereby initiating a new generation. The
fitness value of each chromosome in the current generation is
assessed through a suitable evaluation process.
Consequently, the fitness value serves as a criterion for
selecting a subset of superior chromosomes from the
population to carry forward into the next generation [ €,

Crossover: Following the selection process, the crossover
operation is implemented on the chromosomes chosen from
the population. Crossover entails the exchange of sequences
of bits or genes within the strings of two individuals © I,
This procedure of exchanging traits is executed and

reiterated with various parent individuals until the
subsequent generation showcases the most optimal
individuals.
Pareck A Parent 8 Offspring
+ =
(F(CT0F I {111 (T B [ (T 1)

Fig 1: Uniform Crossover

Mutation: Following the crossover process, the mutation
operation is implemented on a randomly chosen subset of the
population. Mutation results in subtle changes to
chromosomes, facilitating the introduction of beneficial
traits. The primary objective of mutation is to introduce
diversity within a population %51,

After crossover After mutation

1 R REJIN B

11001001 => 10001001

Fig 2: Mutation (Bit Inversion)

Factors essential in a fitness function are:
e | ikelihood.

e Close to Boundary Value.

e Branch Coverage.

It has been proven that GAs required less CPU time in
reaching a global solution in software testing [*31.

Need for Genetic Algorithms in Software Testing:

1. Drawbacks of manual testing: [": 1%

2. Speed of operation is limited as it is carried out by
humans. High investment in terms of cost, time.

3. Limited availability of resources

4. Redundancy in test cases.

5. Inefficient and inaccurate test checking.

Pros of using genetic algorithms in software testing:

Parallelism is a important characteristic of genetic testing [**
19]
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Less likely to get stuck in extreme ends of a code during
testing since it operates in a search space.

With the same encoding, only fitness function needs to be
changed according to the problem.

(SELECTION I
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7 <r‘:‘ enerator
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b |
MUTATION
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Fig 3: Test Case Generation in Software Testing Using GA

Genetic Algorithm Working

The genetic algorithm represents an evolutionary method in
computing, capable of identifying suitable approximate
solutions for optimization challenges. The fundamental
approach utilized by Genetic algorithms generally consists of
generating an initial collection of random solutions
(population) and assessing them [> 5 9 121 After a selection
process, the most effective solutions are identified as the
parents, which are then utilized to produce new solutions,
referred to as children. These values may serve as substitutes
for other less significant members of the population. The
new population is subsequently reevaluated, and the process
of generating new values persists, producing new generations
until a final solution is identified or an alternative criterion
for result determination is achieved.

The Genetic Algorithm draws its terminology from the realm
of biology. For instance, the genetic algorithm employs
various representations for potential solutions known as
chromosomes. The operators utilized to produce new
offspring solutions, such as crossover and mutation, are
inspired by natural processes. In their most fundamental and
straightforward form, Genetic Algorithms were primarily
utilized for single objective search and optimization tasks.

Most  Genetic algorithms  typically incorporate a
chromosome, genetic operators, a selection mechanism, and
an evaluation mechanism [227],

In this scenario, our task is to identify the necessary
parameters to construct an effective function and encapsulate
them within a binary string, which will serve as the definition
of our chromosome. Consequently, every chromosome will
comprehensively characterize a Function.
A typical method when utilizing Genetic Algorithms
involves initiating a ‘population’ of random chromosomes
(Test Variables), often around 100. As previously mentioned,
we can assess each individual and assign a score, or more
accurately, 'evaluate its fitness' (function).
This calculated fitness function will assist in assessing the
efficiency of the employed method 27291, To enhance the
efficiency of the test results, we can modify the input
parameters and derive values for varying population sizes.

~g~
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Applications of Genetic Algorithm

Genetic algorithms have been applied to address complex
issues, including NP-complete and NP-hard problems, as
well as in machine learning, and are also utilized for the
evolution of basic test programs. They serve as a highly
efficient method for swiftly identifying a viable solution to a
multifaceted issue.

Genetic algorithms demonstrate their highest efficiency and
effectiveness in search spaces where knowledge is limited.
Conversely, genetic algorithms may generate solutions that
function well within a test environment but tend to diverge
when applied in real-world scenarios (724,

In simple terms, a genetic algorithm can be employed to
develop solutions for problems that are complex and
challenging to compute and analyze.

Create random population of solutions

Evaluate the solutions

Select parents

Create child solutions

Ewvaluate children

Swap some of the existing solutions
with some of the better children

Repeat until the termintion
criterion is met

Return best solution

Fig 4: Flow chart of the workflow of Genetic Algorithm used for
Test Case Generation n Software Testing.

Implementation of GA in Software Testing

Test case generation using GA in Ruby

Algorithm: Start with randomly generated test cases from
the population.

Calculate the fitness f(x) of each pair of test cases
(chromosome x) in the population. Repeat the following
steps until a n child test cases have been generated.
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1. Select a pair of parent test cases from the current
population where the probability of selection is an
increasing function of fitness. Selection is done “with
replacement,” meaning that the same pair of test case
can be selected more than once to become a parent. i.e.
(Selection process is carried out)

2. With the crossover probability Pc, cross over the pair at
a randomly chosen point to form two child cases or off
springs. If no crossover takes place, form two test cases
that are exact copies of their respective parent cases.

3. Mutate the two child cases with mutation probability
Pm, and place the resulting pair of test cases in the new
population. If n is odd, one new population member can
be discarded at random. Replace the current test cases
with the new test cases.

Population size = 50

Number of generations = 500 Crossover rate=0.7
Mutation rate = 0.001

Ruby Implementation with First Case:

Table 1: Average fitness value with mutation rate = 0.001

Generation Average fitness Max fitness
1 31.88 33
2 32.88 34
3 32.67 34
4 32.75 35
5 32.96 34
10 34.17 38
25 37.29 42
50 41.21 44
100 39.67 47
150 44.33 49
200 46.33 47
250 47.63 49
500 50.23 50
750 51.79 51
1000 52 51
6.1.2

Population size = 50

Number of generations = 500 Crossover rate=0.7
Mutation rate = 0.01

Ruby Implementation with Second Case:

Table 2: Average fitness value with mutation rate = 0.01

Generation Average Max
1 32.25 32
2 32.13 32
3 33.92 33
4 32.42 33
5 33.79 33
10 34.71 34
25 38.42 36
50 39.08 37

100 37.42 36
150 35.54 40
200 38.79 40
250 41.83 39
500 42.18 43

Mutation rate has a great impact on the average on the
average fitness of genetic algorithms during testing. Smaller
the rate, better the fitness function value will be.

~7~
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Below is a graph which represents the average fitness
overtime for different mutation rates.

Avg fitness over time for mutation rates 0.001 and 0.01

50

Avg Bitness

0 125 50 375 500

Generations over time

Genetic Algorithm Implementation in C++
Pseudo-code for genetic algorithm:
1. choose initial_population:

2. evaluate individual fitness
population’s_average
fitness_function

Repeat

select best_case individuals to reproduce;

mate_pairs at random; apply crossover_operator; apply
mutation_operator; evaluate Individual fitness;

7. determine population's average fitness;

function determine

ook w

The second step involves generating data through the outer
loop, which will produce the remaining possible test cases.
To address the potential for impractical test requirements,
encompassing branches and statement values, the loop will
generate iterations until it meets the test results for the
specified population values. The algorithm generates values
that will be utilized for the crossover and mutation operator.
Subsequently, the fitness function for each individual value
is generated, and the average fitness function of the
population is calculated.

In the concluding phase, the algorithm will allocate the
aggregated values of the test cases and identify at least one
individual desired fitness function value until a sufficient
number of test generations have been completed.

6.2.1

Population size = 50

Number of generations = 250 Crossover rate=0.7
Mutation rate = 0.001

Table 3: Best fitness value generation

Iteration|Best fitness | Average fitness | Standard Deviation
1 16.77 11.59 5.54
2 20.39 15.09 3.26
3 20.39 15.71 3.27
4 22.99 15.84 3.79
5 22.99 16.03 3.89
10 23.24 17.65 3.46
25 25.12 20.87 3.61
50 25.89 21.42 4.32
100 26.27 20.88 5.33
150 26.77 23.28 3.77
200 26.77 20.38 6.91
250 26.78 22.41 4.42
500 26.98 22.68 5.54
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Genetic Algorithm Implementation using Matlab

In this work both the genetic algorithm and the random
testing method were compared and detailed analysis of the
best fitness has been evaluated. In order to compare Genetic
algorithm and a pure random method, 150 test cases were
generated and tested by both methods [?2. From this we can
see that the average response time of test cases created by
genetic algorithm is much efficient than that of the random
method.

Case 1 shows the plot of the best and mean score of the
population at every generation. The second plot function is
stopping criteria, which plots the percentage of stopping
criteria satisfied.

axis)
Best: -185.812 Mean: -98 5783
50
+ Best fitness
0 :”'o * Mean fitness

2 “.‘0"'
™ 50 . te -+ +
E . 0’ +* * 0’ . * "
2 w00 R A S
i.l__ - " -

-150 *

Rassdd
_200 1 1 1 1 1 1 1 1 1 ]
0 10 20 30 40 50 60 70 80 90 100
Generation
Stopping Criteria
T T T T T T T T T

Stall (T) - B

Time - B

Generation B
1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
[E— % of criteria met

Graph 2: Shows the plot of the best and mean score of the population at every generation

Results generated for Case 1:

The number of generations: 124

The number of function evaluations: 6250 The best function
value found: -186.

Case 2 shows a better detailed analysis of the best and the
mean fitness function by changing the test cases to 20 instead
of 10. This iteration generates better results than the previous
iteration and by further iterating the test cases the result is
obtained.

Best: -186.627 Mean: -102.922
100
- Best fitness
o + Mean finess
= 0
= 2
£ 100} eRpg
L +
-
200 A — I I I I 1 I 1 I
50 100 160 200 260 300 350 400 450 500
Generation
Stopping Criteria

Stall (T) B
Stall (G) B

Time B

Generation B
1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 50 100
| stop || Pause | % of criteria met

Graph 3: Better detailed analysis of the best and the mean fitness function by changing the test cases to 20 instead of 10
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Genetic algorithm for test case generation using Mat lab was
implemented. It can be found out that for a population of 50
and maximum generations 500, the best fitness function is
carried out until maximum generation is reached or until a
certain value after which no significant change occurs. The
iterative generation is stopped itself after such a condition
hence providing us with a further optimization and avoid
redundant solutions.

Conclusions

In this paper, we analyzed how evolutionary techniques such
as GAs helped in software testing. The findings demonstrate
the efficiency of software testing through the application of
Genetic Algorithms, even as the number of test cases rises.
In Random Testing Methods, the lack of temporal
dependence among data points leads to inefficiencies as the
complexity of the code increases. To enhance the efficiency
and reduce the process time of software testing, Genetic
Algorithms are employed, offering a method for automatic
test case generation. The evolutionary generation of test
cases demonstrates greater efficiency and cost-effectiveness
compared to Random Testing.
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