
 

~ 4 ~ 

 
 
 
 
 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Online ISSN: 3107 - 7676 

IJMR 2025; 1(6): 04-10 

2025 November - December 

www.allmultiresearchjournal.com 

Received: 10-09-2025 

Accepted: 12-10-2025 

Published: 04-11-2025  

DOI: https://doi.org/10.54660/IJMR.2025.1.6.04-10 
 

 

Software Testing Using Genetic Algorithms 

Sumit Saxena 1*, Dr Qaim Mehdi Rizbi 2 

Department of Computer Science, Shri Krishna University Chhatarpur, Madhya Pradesh, India 

 

Corresponding Author; Sumit Saxena 

 
Abstract 

The purpose of this work is to introduce a collection of techniques that utilize a genetic algorithm in order to generate test data 
automatically for software testing. Researchers have been proposing a number of various strategies for generating test data for a 
number of years now. Each of these methods has its own set of disadvantages. The purpose of this work is to introduce a number 
of test techniques that are based on Genetic Algorithms (GAs) and that will have different parameters that can be used to automate 
the generation of test data that is based on the internal structure of the program. In order to determine the most appropriate 
approach for testing, the factors that have been identified are utilized in the process of evaluating the fitness function of the 
genetic algorithm. The test populations are taken as input by these algorithms, which then proceed to evaluate the test cases for 
that particular program. The total effectiveness of the genetic algorithm in the realms of search space exploration and exploitation 
will be improved as a result of this integration, which will also bring about a higher convergence rate. 
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Introduction 

The process of software testing involves testing the amount 
and quality of software during runtime to the greatest extent 
possible. The most fundamental examination of software is 
conducted within the environment for which it was originally 
built. The process of checking whether or not it runs is 
carried out in order to ensure that it produces outputs that are 
both proper and efficient. In addition, software testing is 
carried out in foreign contexts in order to investigate the 
potential for scalability [8, 12].  
Every single piece of software is put through its paces in a 
number of different environments that have been carefully 
planned out. The assumptions of some functions have been 
made, and the testing that has been carried out is expected to 
yield the appropriate results under these assumptions. 
However, it is not possible to identify every single problem 

at any given moment. Rather, it provides a comparison that 
examines the state and behavior of the product, which are the 
principles or methods by which users may be able to identify 
the issue. In general, a test case is made up of the data that 
serves as the input for the software testing process. The 
components that make up this system include a unique 
identification, references to requirements from a software 
specification, a sequence of steps that must be carried out, 
events, preconditions, input, output, the expected outcome, 
and the actual outcome. The number seventeen is written in 
brackets. It is often referred to as an anticipated outcome that 
will occur in the setting that is being evaluated. This can be 
as basic as stating, "for condition your derived result is b," 
but other test cases provided a full examination of the input 
circumstance and displayed findings that were in line with 
expectations [2, 9, 16]. 
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The Genetic Algorithm (GA), which is a type of meta-
heuristic search tool, is used by Evolutionary Testing in 
order to transform the process of generating test cases into an 
optimal problem [4, 13, 27]. The purpose of evolutionary testing 
is to identify the best combinations of test parameters that 
fulfill a predetermined test criterion. A "cost function" that is 
used to represent this test criterion quantifies the degree to 
which each of the optimization parameters that were 
generated automatically fulfills the test requirement that was 
specified [7, 22].  
A study of several forms of genetic algorithms is conducted 
as part of our research, which is presented in our paper. 
Different algorithms have been tested on a variety of 
different tools, and their performance has been analyzed. All 
of these algorithms adhere to the same foundation of 
evolutionary testing, but they possess distinct cost functions. 
The observations that are made regarding the manner in 
which these functions respond are the result of running these 
cost functions on various tools [1, 3, 5, 11]. 
 
Introduction to Genetic Algorithm 

In situations where there is a limited amount of information 
available, one of the most effective methods for resolving a 
group of problems is to utilize a genetic algorithm. Due to 
the fact that genetic algorithms are a very broad type of 
algorithm, they will perform effectively in any search space 
[1, 25, 30, 33]. All you have to know is what you want the 
solution to be able to accomplish in order to perform well, 
and a genetic algorithm will be able to develop a high-quality 
solution for you. In order to provide solutions for a variety of 
complicated issues, genetic algorithms utilize the concepts of 
selection and evolution.  
There is a tendency for genetic algorithms to do well in 
environments that have a very big collection of candidate 
solutions and a search space that is not favorable and has 
numerous hills and valleys [12, 15, 16]. It is true that genetic 
algorithms are able to perform effectively in any context; 
nevertheless, it is possible that they could be surpassed by 
algorithms that are more situationally specific when it comes 
to search spaces that are less complicated. As a result, it is 
important to remember that when dealing with random 
events, genetic algorithms are not always the most 
appropriate option. They may occasionally need a significant 
amount of time to execute, which makes them unsuitable for 
usage in real-time situations. On the other hand, they are 
among the most effective techniques that may be used to 
develop solutions of a high standard rapidly in order to 
address a problem [4, 8, 21]. When it comes to constructing a 
genetic algorithm, there are a small number of fundamental 
methodologies and terminology that will be utilized, such as: 
Individual – Possible solutions 
Population - Set of all individuals 
Search Space - All possible solutions to the specified 
problem 
Chromosome – Blueprint for an individual  
Trait - Possible aspect of an individual entity.  
Allele - Possible settings for a trait 
Locus - The position of a gene on the chromosome 
Genome - Collection of all chromosomes for an individual 
entity. 
 
Background 

Genetic algorithms employ three fundamental operations on 
their population. 
 

Selection: A systematic approach is employed to identify the 
criteria by which individuals are selected for reproduction 
from a population, grounded in their fitness levels. Fitness is 
characterized as an individual's ability and capacity to 
survive and reproduce within a given environment. The 
process of selection creates a new population derived from 
the previous one, thereby initiating a new generation. The 
fitness value of each chromosome in the current generation is 
assessed through a suitable evaluation process. 
Consequently, the fitness value serves as a criterion for 
selecting a subset of superior chromosomes from the 
population to carry forward into the next generation [5, 6]. 
Crossover: Following the selection process, the crossover 
operation is implemented on the chromosomes chosen from 
the population. Crossover entails the exchange of sequences 
of bits or genes within the strings of two individuals [8, 10]. 
This procedure of exchanging traits is executed and 
reiterated with various parent individuals until the 
subsequent generation showcases the most optimal 
individuals. 
 

 
 

Fig 1: Uniform Crossover 
 

Mutation: Following the crossover process, the mutation 
operation is implemented on a randomly chosen subset of the 
population. Mutation results in subtle changes to 
chromosomes, facilitating the introduction of beneficial 
traits. The primary objective of mutation is to introduce 
diversity within a population [1, 5]. 
 

 
 

Fig 2: Mutation (Bit Inversion) 

 

Factors essential in a fitness function are: 

• Likelihood. 

• Close to Boundary Value. 

• Branch Coverage. 
 

It has been proven that GAs required less CPU time in 
reaching a global solution in software testing [13]. 

 
Need for Genetic Algorithms in Software Testing: 

1. Drawbacks of manual testing: [7, 12] 
2. Speed of operation is limited as it is carried out by 

humans. High investment in terms of cost, time. 
3. Limited availability of resources 
4. Redundancy in test cases. 
5. Inefficient and inaccurate test checking. 
 
Pros of using genetic algorithms in software testing: 
Parallelism is a important characteristic of genetic testing [11, 

19]. 
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Less likely to get stuck in extreme ends of a code during 
testing since it operates in a search space. 
With the same encoding, only fitness function needs to be 
changed according to the problem. 
 

 
 

Fig 3: Test Case Generation in Software Testing Using GA 

 

Genetic Algorithm Working 

The genetic algorithm represents an evolutionary method in 
computing, capable of identifying suitable approximate 
solutions for optimization challenges. The fundamental 
approach utilized by Genetic algorithms generally consists of 
generating an initial collection of random solutions 
(population) and assessing them [2, 5, 9, 12]. After a selection 
process, the most effective solutions are identified as the 
parents, which are then utilized to produce new solutions, 
referred to as children. These values may serve as substitutes 
for other less significant members of the population. The 
new population is subsequently reevaluated, and the process 
of generating new values persists, producing new generations 
until a final solution is identified or an alternative criterion 
for result determination is achieved. 
The Genetic Algorithm draws its terminology from the realm 
of biology. For instance, the genetic algorithm employs 
various representations for potential solutions known as 
chromosomes. The operators utilized to produce new 
offspring solutions, such as crossover and mutation, are 
inspired by natural processes. In their most fundamental and 
straightforward form, Genetic Algorithms were primarily 
utilized for single objective search and optimization tasks. 
Most Genetic algorithms typically incorporate a 
chromosome, genetic operators, a selection mechanism, and 
an evaluation mechanism [23, 27]. 
 In this scenario, our task is to identify the necessary 
parameters to construct an effective function and encapsulate 
them within a binary string, which will serve as the definition 
of our chromosome. Consequently, every chromosome will 
comprehensively characterize a Function. 
A typical method when utilizing Genetic Algorithms 
involves initiating a 'population' of random chromosomes 
(Test Variables), often around 100. As previously mentioned, 
we can assess each individual and assign a score, or more 
accurately, 'evaluate its fitness' (function).  
This calculated fitness function will assist in assessing the 
efficiency of the employed method [11, 27, 29]. To enhance the 
efficiency of the test results, we can modify the input 
parameters and derive values for varying population sizes. 
 
 

Applications of Genetic Algorithm 

Genetic algorithms have been applied to address complex 
issues, including NP-complete and NP-hard problems, as 
well as in machine learning, and are also utilized for the 
evolution of basic test programs. They serve as a highly 
efficient method for swiftly identifying a viable solution to a 
multifaceted issue.  
Genetic algorithms demonstrate their highest efficiency and 
effectiveness in search spaces where knowledge is limited. 
Conversely, genetic algorithms may generate solutions that 
function well within a test environment but tend to diverge 
when applied in real-world scenarios [17, 24]. 
In simple terms, a genetic algorithm can be employed to 
develop solutions for problems that are complex and 
challenging to compute and analyze. 
 

 
 

Fig 4: Flow chart of the workflow of Genetic Algorithm used for 

Test Case Generation n Software Testing. 
 
Implementation of GA in Software Testing 

Test case generation using GA in Ruby 

Algorithm: Start with randomly generated test cases from 
the population. 
Calculate the fitness f(x) of each pair of test cases 
(chromosome x) in the population. Repeat the following 
steps until a n child test cases have been generated. 
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1. Select a pair of parent test cases from the current 
population where the probability of selection is an 
increasing function of fitness. Selection is done “with 
replacement,” meaning that the same pair of test case 
can be selected more than once to become a parent. i.e. 
(Selection process is carried out) 

2. With the crossover probability Pc, cross over the pair at 
a randomly chosen point to form two child cases or off 
springs. If no crossover takes place, form two test cases 
that are exact copies of their respective parent cases. 

3. Mutate the two child cases with mutation probability 
Pm, and place the resulting pair of test cases in the new 
population. If n is odd, one new population member can 
be discarded at random. Replace the current test cases 
with the new test cases. 
 

Population size = 50 
Number of generations = 500 Crossover rate=0.7 
Mutation rate = 0.001 
 
Ruby Implementation with First Case: 

 
Table 1: Average fitness value with mutation rate = 0.001 

 

Generation Average fitness Max fitness 

1 31.88 33 

2 32.88 34 

3 32.67 34 

4 32.75 35 

5 32.96 34 

10 34.17 38 

25 37.29 42 

50 41.21 44 

100 39.67 47 

150 44.33 49 

200 46.33 47 

250 47.63 49 

500 50.23 50 

750 51.79 51 

1000 52 51 

 

6.1.2 

Population size = 50 
Number of generations = 500 Crossover rate=0.7 
Mutation rate = 0.01 
 
Ruby Implementation with Second Case: 

 
Table 2: Average fitness value with mutation rate = 0.01 

 

Generation Average Max 

1 32.25 32 

2 32.13 32 

3 33.92 33 

4 32.42 33 

5 33.79 33 

10 34.71 34 

25 38.42 36 

50 39.08 37 

100 37.42 36 

150 35.54 40 

200 38.79 40 

250 41.83 39 

500 42.18 43 

 
Mutation rate has a great impact on the average on the 
average fitness of genetic algorithms during testing. Smaller 
the rate, better the fitness function value will be. 

Below is a graph which represents the average fitness 
overtime for different mutation rates. 
 

 
 
Genetic Algorithm Implementation in C++ 

Pseudo-code for genetic algorithm: 

1. choose initial_population: 
2. evaluate individual_fitness function determine 

population’s_average 
3. fitness_function 
4. Repeat 
5. select best_case individuals to reproduce; 
6. mate_pairs at random; apply crossover_operator; apply 

mutation_operator; evaluate Individual fitness; 
7. determine population's average fitness; 
 
The second step involves generating data through the outer 
loop, which will produce the remaining possible test cases. 
To address the potential for impractical test requirements, 
encompassing branches and statement values, the loop will 
generate iterations until it meets the test results for the 
specified population values. The algorithm generates values 
that will be utilized for the crossover and mutation operator. 
Subsequently, the fitness function for each individual value 
is generated, and the average fitness function of the 
population is calculated.  
In the concluding phase, the algorithm will allocate the 
aggregated values of the test cases and identify at least one 
individual desired fitness function value until a sufficient 
number of test generations have been completed. 
 
6.2.1 

Population size = 50 
Number of generations = 250 Crossover rate=0.7 
Mutation rate = 0.001 
 

Table 3: Best fitness value generation 
 

Iteration Best fitness Average fitness Standard Deviation 

1 16.77 11.59 5.54 

2 20.39 15.09 3.26 

3 20.39 15.71 3.27 

4 22.99 15.84 3.79 

5 22.99 16.03 3.89 

10 23.24 17.65 3.46 

25 25.12 20.87 3.61 

50 25.89 21.42 4.32 

100 26.27 20.88 5.33 

150 26.77 23.28 3.77 

200 26.77 20.38 6.91 

250 26.78 22.41 4.42 

500 26.98 22.68 5.54 
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Graph 1: Number of generations (x-axis) vs. average fitness (y-
axis) 

 

Genetic Algorithm Implementation using Matlab 

In this work both the genetic algorithm and the random 
testing method were compared and detailed analysis of the 
best fitness has been evaluated. In order to compare Genetic 
algorithm and a pure random method, 150 test cases were 
generated and tested by both methods [22]. From this we can 
see that the average response time of test cases created by 
genetic algorithm is much efficient than that of the random 
method. 
Case 1 shows the plot of the best and mean score of the 
population at every generation. The second plot function is 
stopping criteria, which plots the percentage of stopping 
criteria satisfied. 

 
 

 

Graph 2: Shows the plot of the best and mean score of the population at every generation 

 
Results generated for Case 1: 
The number of generations: 124 
The number of function evaluations: 6250 The best function 
value found: -186. 

Case 2 shows a better detailed analysis of the best and the 
mean fitness function by changing the test cases to 20 instead 
of 10. This iteration generates better results than the previous 
iteration and by further iterating the test cases the result is 
obtained. 

 

 
 

Graph 3: Better detailed analysis of the best and the mean fitness function by changing the test cases to 20 instead of 10 
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Genetic algorithm for test case generation using Mat lab was 
implemented. It can be found out that for a population of 50 
and maximum generations 500, the best fitness function is 
carried out until maximum generation is reached or until a 
certain value after which no significant change occurs. The 
iterative generation is stopped itself after such a condition 
hence providing us with a further optimization and avoid 
redundant solutions. 
 
Conclusions 

In this paper, we analyzed how evolutionary techniques such 
as GAs helped in software testing. The findings demonstrate 
the efficiency of software testing through the application of 
Genetic Algorithms, even as the number of test cases rises. 
In Random Testing Methods, the lack of temporal 
dependence among data points leads to inefficiencies as the 
complexity of the code increases. To enhance the efficiency 
and reduce the process time of software testing, Genetic 
Algorithms are employed, offering a method for automatic 
test case generation. The evolutionary generation of test 
cases demonstrates greater efficiency and cost-effectiveness 
compared to Random Testing. 
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